An Anti Mode Mixing EMD Algorithm for Detecting the Characteristics of Low Frequency Oscillations in Power System
نویسندگان
چکیده
The dynamics of modern interconnected power system is characterized by low frequency oscillations (LFOs) which are produced as results of various disturbances such as changes in loads, tripping of lines, faults, and other discrete events. A data driven empirical mode decomposition (EMD) method is applied to the detection of low frequency oscillation modes from disturbed trajectory with its strong non-stationary signal processing capability, but the mode mixing phenomenon serious impact on the analysis credibility and accuracy of EMD method. In this paper, an anti mode mixing EMD composite algorithm is proposed for detecting the characteristics of LFOs in power system. First, the improved frequency heterodyne method is proposed to increase the spectral distance between adjacent mode components in order to meet the octave resolution requirements. Second, the wavelet singularity detection technology is proposed to determine the adaptive sliding analysis window for each mode, in which there implements the intermittency mixed modes separation and their nonstationary parameters identification. Finally, the analysis result of interconnected grid test case verify that the proposed algorithm can effectively overcome the impact of the mode mixing existed in EMD and improve the characteristics detection accuracy of LFOs characteristics.
منابع مشابه
Recognition of Multiple PQ Issues using Modified EMD and Neural Network Classifier
This paper presents a new framework based on modified EMD method for detection of single and multiple PQ issues. In modified EMD, DWT precedes traditional EMD process. This scheme makes EMD better by eliminating the mode mixing problem. This is a two step algorithm; in the first step, input PQ signal is decomposed in low and high frequency components using DWT. In the second stage, the low freq...
متن کاملA New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations
A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...
متن کاملFACTS Control Parameters Identification for Enhancement of Power System Stability
The aim of this paper is to investigate a novel approach for output feedback damping controller design ofSTATCOM in order to enhance the damping of power system low frequency oscillations (LFO). The design ofoutput feedback controller is considered as an optimization problem according with the time domain-basedobjective function which is solved by a honey bee mating optimization algorithm (HBMO...
متن کاملLoad Frequency Control in Two Area Power System Using Sliding Mode Control
In this article, the sliding mode control of frequency load control of power systems is studied. The study areaconsists of a system of water and heat. First, a mathematical model of the proposed system disturbances ismade and then sliding control mode for frequency load control is provided. By the system simulation andsliding mode control, it can be shown that the damping of oscillations is wel...
متن کاملCoordinated Design of PSS and SSSC Damping Controller Considering Time Delays using Biogeography-based Optimization Algorithm
In this paper, a consistent pattern with the optimal coordinated design of PSS and SSSC controller to improve the damping of low frequency oscillations is shown. In this design, sensing and signal transmission time delays are considered as effectiveness parameters. The design problem has been considered an optimization problem and biogeography-based optimization (BBO) algorithm is used for sear...
متن کامل